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Abstract.
Cloud storage is an emerging architecture aiming to provide increased scalability and access

performance, compared to more traditional solutions. CERN is evaluating this promise using
Huawei UDS and OpenStack SWIFT storage deployments, focusing on the needs of high-energy
physics. Both deployed setups implement S3, one of the protocols that are emerging as a
standard in the cloud storage market. A set of client machines is used to generate I/O load
patterns to evaluate the storage system performance. The presented read and write test results
indicate scalability both in metadata and data perspectives. Futher the Huawei UDS cloud
storage is shown to be able to recover from a major failure of losing 16 disks. Both cloud
storages are finally demonstrated to function as back-end storage systems to a filesystem, which
is used to deliver high energy physics software.

1. Introduction
CERN (the European Organization for Nuclear Research) is the largest research centre for
particle physics in the world and home of the LHC (Large Hadron Collider), a 27 kilometre long
circular accelerator located 100 metres below the surface. Four large scale experiments along
this ring create every year tens of petabytes of data, which need to be reliably stored for analysis
in the CERN computing centre and many partner sites in the Worldwide LHC Computing Grid
(WLCG). Physics data is still usually today stored with custom storage solutions, which have
been developed for this purpose within the HEP (High Energy Physics) community.

The recently emerged cloud storage architecture and its implementations may provide scalable
and potentially more cost effective alternatives to current systems [4]. Native cloud storage
systems, such as the Amazon S3 [1], are typically based on a distributed key-value store,
which divides the storage namespace up into independent units called buckets. This namespace
partitioning increases scalability by insuring that access to a bucket is unaffected by data access
in other buckets of the same system. In addition the internal replication and distribution of
data replicas over different storage components provides fault-tolerance and additional read
performance: multiple data copies are available to correct storage media failures and to serve
multiple concurrent clients.

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 042024 doi:10.1088/1742-6596/513/4/042024

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



The goal of this paper is to present the study of one implementation of the cloud storage
concept, the Huawei UDS1 (Universal Distributed Storage) system, with typical CERN data
access patterns and volumes. Huawei UDS implements S3 (Simple Storage Service) as an access
protocol, which has become a de-facto standard across many cloud storage systems. S3 extends
HTTP protocol with an authorisation system and provides functions to manage storage system
entities such as files and buckets via HTTP REST request, e.g. GET, PUT or DELETE.

Unlike some other cloud storage systems, UDS has full support for multi byte-range reads
that are also known as vector reads. Each vector read returns only the specific ranges of bytes
requested and hence allows to avoid full file transfer. This is expected to be especially relevant
for physics analysis use cases, which are characterised by sparse and non-sequential data access.

The paper is structured as follows. Chapter 2 describes the UDS system design and
characteristics. Chapter 3 presents the features and deployment of the benchmark used for
evaluating the cloud storage systems. Chapter 4 summarises benchmark and application test
results. Finally, Chapter 5 draws conclusions from the study results and outlines the future
workplan.

2. UDS cloud storage
This chapter gives an overview of the Huawei UDS massive data storage system. The focus is
on the hardware and features of the cloud storage setup that is used at CERN.

2.1. Hardware components
The evaluated UDS setup is physically located in the CERN computing centre and placed in
three racks with a total storage capacity of 768 terabytes. The system has two main functional
components:

• Control Nodes (OSC). The OSCs are user-facing frontend nodes which implement the S3
access protocol and delegate the storage functions to storage nodes. OSC nodes are in
charge of scheduling, distributing and retrieving the data of the storage nodes. They are
the only components exposed to the outside world. The evaluated setup at CERN consist
of seven OSCs.

• Storage Nodes (SOD). The SODs are independent storage nodes, which manage data and
metadata on local hard disks. In the tested system SOD nodes consists of a 2 terabyte
disk coupled to a dedicated ARM processor and memory. The total setup consists of 384
disk-processor pairs, which are physically grouped in blades of eight SODs. Two of these
blades form one chassis within a CERN computer center rack.

The connectivity between these components is provided with three switches. The system is
accessed via two 10Gb network connections from a group of CERN-based client nodes.

2.2. UDS features
The UDS is a storage system designed for handling large amounts of data. The stored objects
are divided in the OSCs into one megabyte chunks. These chunks are then spread and stored on
the storage nodes. The examined UDS setup uses three replicas to ensure the data availability
and reliability. Data replicas are distributed to different storage nodes such that a loss of one
complete chassis, i.e. 16 storage nodes, will not have impact on data availability.

In case of a disk failure, an automated self-healing mechanism ensures that the data on the
faulty disk is handled by the other storage nodes. Corrupted or unavailable data are replaced
using the remaining replicas.

1 http://enterprise.huawei.com/ilink/cnenterprise/download/HW 259595
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3. Benchmark framework
In the following sections we describe the benchmark setup and application used for our
evaluation.

3.1. Benchmark design
We evaluate the cloud storage performance with a S3 benchmark2 we developed for this purpose.
The benchmark framework is implemented in C++ and utilises the ROOT system [3], a widely
used scientific data analysis package. A benchmark master process deploys and monitors many
parallel client processes via ssh connections on a pool of 21 dedicated client machines. As S3
client library we have utilised the frequently used Amazon AWS Python library3. Using the
above packages we run a large number of benchmarks in different configurations to measure the
aggregated throughput and rate of metadata operations. In addition to basic data upload and
download functions we also tested more complex functions such as byte-range read operations
and data management functions such as creation and listing of S3 bucket contents.

For all performed benchmarks our benchmark system was collecting key client side metrics to
make sure, that our aggregate performance results were not affected by client side bottlenecks.
In particular we monitored :

• Operation time: the time in seconds it took each request to complete.
• Transmit rate: the data sending speed to the server in bytes per second.
• Receive rate: the data receiving speed from the server in bytes per second.
• CPU usage: the percentage of the total CPU each client is using.
• Memory usage: the percentage of the total memory each client is using.

3.2. Deployment
Our benchmark software was hosted and distributed among all involved machines via the
distributed file system AFS4, which is used at CERN. Each of the 21 client machines were
connected via an 1Gb network link, matching the 20Gb network connectivity (two 10 Gb links)
connecting to the UDS server. Each client machine was equipped with 48GB of RAM memory
and 24 Intel Xeon 2.27 GHz cores.

4. Experiments
In this section we present the experiments performed with the UDS system and the obtained
results. Measurement errors estimations are shown as standard deviation among three repeated
measurements.

4.1. Metadata scalability
To test specifically the metadata performance of the system we have used very small 4kB files
with randomly generated filenames. The small amount of payload data in 4kB allows to avoid
any throughput related constraints and stress particularly the metadata handling.

We started by testing data uploads and quickly confirmed that the number of buckets used
simultaneously in S3 had the expected performance impact on file creations: with increasing
number of buckets, and hence independent namespace providers, we obtained increasing
throughput. Figure 1 shows the upload performance with 100 and 2100 buckets. The number
of buckets started to limit the performance when the number of parallel uploads increased over
200.
2 The S3 benchmark software can be requested from the authors.
3 http://code.google.com/p/awspylib/
4 http://www.openafs.org/
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The number of buckets did not however significantly affect the measured download
performance. Maximum performance was already reached using a single bucket with 1,000
files of 4kB. The number of concurrent download processes was increased on each test run.
Figure 2 shows that the performance scaled linearly up to a rate of 25,000 files per second. The
maximum upload speed for small files is in our setup limited by the capability of frontends to
handle the requests. The scalability with increasing number of frontends nodes is examined in
more detail in a separate section below.
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Figure 2. Scalability of metadata (down-
loads of 4kB files)

4.2. Data throughput
In addition to metadata performance we also measured how much data can be transferred in
a given amount of time. For these throughput measurements we used larger files of 100MBs.
With this payload size the upload performance is not any more strongly affected by the number
of concurrently used buckets as rate of metadata operation is several orders lower. As Figure 3
shows, the upload throughputs were almost identical when using 100 and 2100 buckets and we
easily filled the available network bandwidth of 20Gb.

Similarly, also the download throughput is largely unaffected by the number of concurrently
used buckets. For this reason we could use a single bucket with 100 files of 100MB for downloads.
As figure 4 shows, we reached the bandwidth limit already with around 100 processes.

4.3. Frontend scalability
Next we examined frontend scalability up to all seven frontend nodes in our UDS setup. The
aim was to verify weather each additional frontend is indeed able to add a similar amount of
processing capability to the storage system. For this we repeated the previously presented tests
while varying the number of concurrently used frontend nodes.

Figure 5 shows the result with 4kB file downloads. Each frontend adds linearly around 3500
files per second to the total download rate. The achieved maximum 4kB download performance
could likely be further increased further by adding more frontend nodes. The frontends were
not a limiting factor with 4kB uploads, because already one frontend was able to upload around
800 files per second.

Figure 6 shows the resulting scaling with 100MB uploads. Each additional frontend node
was able to upload data around 550MB per second. The network bandwidth limit was however
already reached with three frontend nodes, limiting the area in which our setup can confirm
linear scalability.
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Figure 3. Scalability of upload throughput
(100MB files)
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4.4. Impact and recovery from power failures
This section describes the UDS system response when intentionally forcing a whole chassis of
16 disks to fail. For this test we kept the system actively used while simulating a power failure
on one chassis by unplugging its power connection. During the test we performed uploads and
downloads with 10MB files for a period of 30 minutes. Figure 7 and figure 8 show the result
of the test for write and read operations, respectively. These tests were run first with a fully
operational UDS system for 500 seconds until we disconnected the chassis power (first vertical
red line). The power was 300 seconds later reconnected (second vertical red line) and the system
was left undisturbed.

Figure 7 and Figure 8 show that the affected clients (doing uploads and downloads on this
chassis) experienced delays up to around 60 seconds but no errors - all the read and write
operations were completed successfully. Further down the UDS automated recovery process,
a third vertical red line shows when the first nodes became available again after the chassis
rebooted. It took around 200 seconds for the first nodes to be available. At this point we again
measured some delays with write operations, while read operations were not affected. The last
red line indicates the point when all UDS nodes were fully recovered and available again.
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Figure 7. Upload times during chassis failure
recovery
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Figure 8. Download times during chassis
failure recovery

4.5. Use as filesystem backend
In this section we evaluate the ability of cloud storage to serve as storage backend for a file system.
We are focussing on CVMFS (CernVM File System), as an example, which is a read-only, cached
file system that among other applications is widely used to distribute HEP software [2] within
the Worldwide LHC Computing Grid (WLCG).

The CVMFS system was recently adapted to store data in multiple buckets in the cloud
store in order to achieve the maximum upload performance. For this purpose a Squid5 proxy
server was configured to redirect user file names to corresponding storage names, which include
a bucket location, which is deterministically derived from a hash of the user filename. The
CVMFS system with cloud storage backends was tested by simulating the publishing step of a
software release consisting of 30,000 small files. The files sizes were uniformly distributed from
5kB to 15kB.

The release process using CVMFS consists of two separate steps: in the first step the release
coordinator specifies new files for a release. The second publish step then writes the files to
the configured backend storage system. In our storage evaluation we hence focused on the
performance of the publish step.

Inside the storage backend of CVMFS files are identified by a hash, which is calculated from
the actual file content. This allows to rapidly determine if a particular file version has already
stored been stored, without the need of a full data transfer. This approach is particularly
effective for distributing software since in many cases only small fraction of files changes between
consecutive releases.

Figure 9 shows CVMFS upload speeds with different fraction of unchanged files. The UDS
back-end was able to publish around 1200 new files per second. The total release speed however
more than doubles as the fraction of already previously stored files increases.

A small OpenStack SWIFT setup [5] was also tested as a CVMFS backend. This setup was
able to upload around 200 files per second when measuring the metadata upload performance
with 4kB files. Running the above publishing tests using CVMFS with OpenStack backend we
therefore obtained also a lower publishing rate of 200 files per second as shown in Figure 10.

5 http://www.squid-cache.org/
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Figure 9. CVMFS with UDS back-end
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Figure 10. CVMFS with SWIFT back-end

5. Conclusions
In this study we evaluated a modern cloud storage system in the context of CERN’s data storage
requirements. The paper focused on the aspects of scalability, reliability and fault tolerance.
The evaluation was performed using both synthetic performance benchmarks and a real storage
application.

The file uploads and downloads were found to scale with small 4kB files up to 2,500 and
25,000 files per second, respectively. The uploads and downloads were also found to scale with
100MB files until most of the two available 10Gb fibres were utilised. The number of frontends
was shown to linearly increase the download speed of small 4kB files and upload throughput of
100MB files.

Concerning the fault-tolerance provided by the UDS system, we demonstrated a transparent
recovery after powering off a chassis of 16 disks. We also successfully used Huawei UDS and the
OpenStack SWIFT cloud storages as a backend to the CernVM file system. The cloud storage
systems behaved as expected and we did not find major problems that would prevent their use
as high energy physics data storage.

Planned next steps include the integration with other storage services at CERN and
replication tests between cloud storage setups of different vendors and at different sites.
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